Add like
Add dislike
Add to saved papers

Prostaglandin F2α Receptor Modulation Affects Eye Development in Guinea Pigs.

Retinal arachidonic acid (ARA) levels in form-deprived eyes decline in guinea pigs. As prostaglandin F2α (PGF2α) is an ARA metabolite and endogenous agonist of prostaglandin F receptor (FP), we have been suggested that down-regulation of PGF2α-FP receptor signalling pathway contributes to myopia onset. To test this hypothesis, this study determines whether: (i) retinal PGF2α levels decline during the development of form deprivation myopia (FDM) in guinea pigs; (ii) FP receptor agonism and antagonism alter emmetropization and myopia development. Pigmented guinea pigs were randomly assigned to normal vision and form-deprived groups. Ultraperformance liquid chromatography coupled with a mass spectrometer (UPLC-MS) measured retinal PGF2α levels 2 weeks after form deprivation (FD). The selective FP agonist, latanoprost acid (LAT) and its corresponding antagonist, AL8810, were peribulbarly injected into each group. An eccentric infrared photorefractor (EIR) monitored refraction. A-scan ultrasonography measured axial elongation (AL) and vitreous chamber depth (VCD). Tonometry measured the intraocular pressure (IOP). Retinal PGF2α levels declined in form-deprived eyes compared to those in normal eyes. Neither LAT nor AL8810 affected IOP with or without FD. On the other hand, after 4 weeks of daily 0.5 μg AL8810 treatment, a myopia of -1.99 ± 0.34 dioptre (D) developed, but LAT had no effect on emmetropization in a normal visual environment. Nevertheless, daily 30 μg LAT treatment for 4 weeks inhibited FDM development by 41% (vehicle control: -8.39 ± 0.45 D; LAT: -4.95 ± 0.39 D; two-way anova with repeated measures, p < 0.05). Down-regulation of PGF2α-FP receptor signalling pathway may contribute to myopia onset as retinal PGF2α declined in myopic eyes and antagonism of FP receptor by AL8810 induced a myopic shift in normal vision environment. Meanwhile, up-regulation of this pathway by LAT inhibited FDM development. However, the mechanism underlying LAT-induced FDM inhibition needs further clarification. This uncertainty exists because its inhibition of FDM suggests that LAT strengthens the scleral framework which reduces axial elongation. On the other hand, its IOP-lowering effect is attributed to thinning and weakening the scleral framework in glaucoma treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app