Add like
Add dislike
Add to saved papers

Evaluation of Flexural Strength of Polymethyl Methacrylate modified with Silver Colloidal Nanoparticles subjected to Two Different Curing Cycles: An in vitro Study.

AIM: Silver colloidal nanoparticles have been incorporated into acrylic resins to induce antimicrobial properties. However, as additives, they can influence the mechanical properties of the final product. Mechanical properties are also dependent on different curing cycles. The aim of this study was to evaluate flexural strength of a denture base resin incorporated with different concentrations of silver colloidal nanoparticles subjected to two different curing cycles.

MATERIALS AND METHODS: Lucitone 199 denture base resin was used into which silver colloidal nanoparticles were incorporated at 0.5 and 5% by polymer mass. Specimens devoid of nanoparticles were used as controls. A total of 60 specimens were fabricated and divided into two groups. Each group was divided into three subgroups consisting of 10 specimens each. The specimens were fabricated according to American Dental Association (ADA) specification No. 12 and tested for flexural strength using universal testing machine.

RESULTS: Silver colloidal nanoparticle incorporation at 0.5% concentration increased the mean flexural strength in both curing cycles by 7.5 and 4.4%, respectively, when compared with the control group.

CONCLUSION: The study suggested that the mean flexural strength value of 0.5% silver colloidal nanoparticles in denture base resin was above the value of the control group both in short and long curing cycles, which makes it clinically suitable as a denture base material. However, at 5% concentration, the statistically significant amount of decrease in flexural strength compared with the value of control group both in short and long curing cycles gives it a questionable prognosis.

CLINICAL SIGNIFICANCE: The specimens incorporated with the antimicrobial agent 0.5% silver colloidal nanoparticles and processed by long curing cycles showed significant increase in its flexural strength compared with the control group, which makes it clinically suitable as a denture base material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app