Add like
Add dislike
Add to saved papers

3D Printing of Bioinspired Liquid Superrepellent Structures.

Bioinspired re-entrant structures have been proved to be effective in achieving liquid superrepellence (including anti-penetration, anti-adhesion, and anti-spreading). However, except for a few reports relying on isotropic etching of silicon wafers, most fluorination-dependent surfaces are still unable to repel liquids with extreme low surface energy (i.e., γ < 15 mN m-1 ), especially those fluorinated solvents. Herein, triply re-entrant structures, possessing superrepellence to water (with surface tension γ of 72.8 mN m-1 ) and various organic liquids (γ = 12.0-27.1 mN m-1 ), are fabricated via two-photon polymerization based 3D printing technology. Such structures can be constructed both on rigid and flexible substrates, and the liquid superrepellent properties can be kept even after oxygen plasma treatment. Based on the prepared triply re-entrant structures, micro open capillaries are constructed on them to realize directional liquid spreading, which may be applied in microfluidic platforms and lab-on-a-chip applications. The fabricated arrays can also find potential applications in electronic devices, gas sensors, microchemical/physical reactors, high-throughput biological sensors, and optical displays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app