Journal Article
Review
Add like
Add dislike
Add to saved papers

How Does a Helicase Unwind DNA? Insights from RecBCD Helicase.

DNA helicases are a class of molecular motors that catalyze processive unwinding of double stranded DNA. In spite of much study, we know relatively little about the mechanisms by which these enzymes carry out the function for which they are named. Most current views are based on inferences from crystal structures. A prominent view is that the canonical ATPase motor exerts a force on the ssDNA resulting in "pulling" the duplex across a "pin" or "wedge" in the enzyme leading to a mechanical separation of the two DNA strands. In such models, DNA base pair separation is tightly coupled to ssDNA translocation of the motors. However, recent studies of the Escherichia coli RecBCD helicase suggest an alternative model in which DNA base pair melting and ssDNA translocation occur separately. In this view, the enzyme-DNA binding free energy is used to melt multiple DNA base pairs in an ATP-independent manner, followed by ATP-dependent translocation of the canonical motors along the newly formed ssDNA tracks. Repetition of these two steps results in processive DNA unwinding. We summarize recent evidence suggesting this mechanism for RecBCD helicase action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app