Add like
Add dislike
Add to saved papers

HLA-G peptide preferences change in transformed cells: impact on the binding motif.

Immunogenetics 2018 August
HLA-G is known for its strictly restricted tissue distribution. HLA-G expression could be detected in immune privileged organs and many tumor entities such as leukemia, multiple myeloma, and non-Hodgkin and Hodgkin's lymphoma. This functional variability from mediation of immune tolerance to facilitation of tumor immune evasion strategies might translate to a differential NK cell inhibition between immune-privileged organs and tumor cells. The biophysical invariability of the HLA-G heavy chain and its contrary diversity in immunity implicates a strong influence of the bound peptides on the pHLA-G structure. The aim was to determine if HLA-G displays a tissue-specific peptide repertoire. Therefore, using soluble sHLA-G technology, we analyzed the K562 and HDLM-2 peptide repertoires. Although both cell lines possess a comparable proteome and recruit HLA-G-restricted peptides through the same peptide-loading pathway, the peptide features appear to be cell specific. HDLM-2 derived HLA-G peptides are anchored by an Arg at p1 and K562-derived peptides are anchored by a Lys. At p2, no anchor motif could be determined while peptides were anchored at pΩ with a Leu and showed an auxiliary anchor motif Pro at p3. To appreciate if the peptide anchor alterations are due to a cell-specific differential peptidome, we performed analysis of peptide availability within the different cell types. Yet, the comparison of the cell-specific proteome and HLA-G-restricted ligandome clearly demonstrates a tissue-specific peptide selection by HLA-G molecules. This exclusive and unexpected observation suggests an exquisite immune function of HLA-G.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app