Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Air-Water Interfacial Properties of Chloroform-Spread versus Water-Spread Poly((d,l-lactic acid- co-glycolic acid)- block-ethylene glycol) (PLGA-PEG) Polymers.

Polymers at fluid interfaces are used for a number of applications that include coatings, electronics, separation, energy, cosmetics, and medicines. Here, we present a study on an amphiphilic block copolymer, poly((d,l-lactic acid- co-glycolic acid)- block-ethylene glycol) (PLGA-PEG), at the air-water interface. PLGA-PEG at the air-water interface prepared by using an organic spreading solvent exhibits an extremely high surface pressure without the occurrence of desorption, making it an attractive candidate for a variety of uses in the areas mentioned above. The origin of this high surface pressure increase was shown to be due to the glass transition of the PLGA segments. The temperature at which this glass transition occurs for the PLGA segments of PLGA-PEG at the air-water interface was measured to be about 290 K by thermodynamic analysis based on the two-dimensional Maxwell relations. However, from an applications standpoint, spreading by an organic solvent greatly limits its scope of feasible uses. To explore the possibility of maintaining the excellent surface mechanical properties of the PLGA-PEG at the air-water interface while not using an organic solvent, we investigated the air-water interfacial properties of water-spread PLGA-PEG. When spread with water, it was shown that the initial micelles that form in the aqueous spreading solution remain intact even after being spread onto the air-water interface. Due to this different morphology, the surface pressure and monolayer stability were greatly reduced for the water-spread PLGA-PEG at the air-water interface. We used the Daoud and Cotton's blob scaling model to describe the desorption process of the water-spread PLGA-PEG at the air-water interface. From the scaling concept, it was shown that with higher PEG molecular weight and larger micelle size, the adsorption energy of the water-spread PLGA-PEG to the air-water interface was increased.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app