Add like
Add dislike
Add to saved papers

Dose-dependent modulation of the visually evoked N1/N170 by perceptual surprise: a clear demonstration of prediction-error signalling.

Prediction-error checking processes play a key role in predictive coding models of perception. However, neural indices of such processes have yet to be unambiguously demonstrated. To date, experimental paradigms aiming to study such phenomena have relied upon the relative frequency of stimulus repeats and/or 'unexpected' events that are physically different from 'expected' events. These features of experimental design leave open alternative explanations for the observed effects. A definitive demonstration requires that presumed prediction error-related responses should show contextual dependency (rather than simply effects of frequency or repetition) and should not be attributable to low-level stimulus differences. Most importantly, prediction-error signals should show dose dependency with respect to the degree to which expectations are violated. Here, we exploit a novel experimental paradigm specifically designed to address these issues, using it to interrogate early latency event-related potentials (ERPs) to contextually expected and unexpected visual stimuli. In two electroencephalography (EEG) experiments, we demonstrate that an N1/N170 evoked potential is robustly modulated by unexpected perceptual events ('perceptual surprise') and shows dose-dependent sensitivity with respect to both the influence of prior information and the extent to which expectations are violated. This advances our understanding of perceptual predictions in the visual domain by clearly identifying these evoked potentials as an index of visual surprise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app