Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Noncanonical Hox, Etv4, and Gli3 gene activities give insight into unique limb patterning in salamanders.

Limb development in salamanders is unique among tetrapods in significant ways. Not only can salamanders regenerate lost limbs repeatedly and throughout their lives, but also the preaxial zeugopodial element and digits form before the postaxial ones and, hence, with a reversed polarity compared to all other tetrapods. Moreover, in salamanders with free-swimming larval stages, as exemplified by the axolotl (Ambystoma mexicanum), each digit buds independently, instead of undergoing a paddle stage. Here, we report gene expression patterns of Hoxa and d clusters, and other crucial transcription factors during axolotl limb development. During early phases of limb development, expression patterns are mostly similar to those reported for amniotes and frogs. Likewise, Hoxd and Shh regulatory landscapes are largely conserved. However, during late digit-budding phases, remarkable differences are present: (i) the Hoxd13 expression domain excludes developing digits I and IV, (ii) we expand upon previous observation that Hoxa11 expression, which traditionally marks the zeugopodium, extends distally into the developing digits, and (iii) Gli3 and Etv4 show prolonged expression in developing digits. Our findings identify derived patterns in the expression of key transcription factors during late phases of salamander limb development, and provide the basis for a better understanding of the unique patterning of salamander limbs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app