Add like
Add dislike
Add to saved papers

A novel single-step GC-MS/MS method for cannabinoids and 11-OH-THC metabolite analysis in hair.

THC, CBD, CBN, THC-COOH and 11-OH-THC are the most popular markers of cannabis consumption and abuse. The use of this drug is a serious social problem worldwide. In this study, a method based on gas chromatography-tandem mass spectrometry (GC-MS/MS) operated in electron ionization (EI) with simple and rapid liquid-liquid extraction (LLE) and derivatization was developed and validated for the simultaneous determination of THC, CBD, CBN and 11-OH-THC in hair samples. The detection of all compounds was based on multiple reaction monitoring (MRM) transitions. The most important advantage of this method is the single-step, quick, easy and effective sample extraction procedure for THC, CBD, CBN and 11-OH-THC. The method showed a good linearity with a correlation coefficient (r2 ) between 0.997 and 0.999 for all substances. The variation coefficient (%CV) was <5% for THC, 11-OH-THC and CBD and <13% for CBN. The limit of detection (LOD) was 0.03 pg/mg for 11-OH-THC and it ranged from 0.3 to 1.4 pg/mg for THC, CBD and CBN. The limit of quantification was 0.1 pg/mg for 11-OH-THC and it ranged from 0.9 to 4.7 pg/mg for THC, CBD and CBN. Analytical recovery was higher than 88% for 11-OH-THC and it ranged between 68 and 97% for THC, CBD and CBN. Intra- and inter-assay precision and accuracy were always lower than 9-14% and 5-9%, respectively. In parallel, we have quantified the THC-COOH level, following the methods previously set-up by us. The whole procedure was successfully applied to more than 200 different hair samples from cannabis consumers, disclosing the presence of 11-OH-THC in a range between 0.2 pg/mg and 27 pg/mg, and the presence of THC-COOH in a range between 0.05 pg/mg and 42.05 pg/mg. These data provided a good start towards the use of 11-THC-OH as alternative hair biomarker of cannabis consumption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app