JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of cell adhesion motif, fiber stiffness, and cyclic strain on tenocyte gene expression in a tendon mimetic fiber composite hydrogel.

We recently developed a fiber composite consisting of tenocytes seeded onto discontinuous fibers embedded within a hydrogel, designed to mimic physiological tendon micromechanics of tension and shear. This study examined if cell adhesion peptide (DGEA or YRGDS), fiber modulus (50 or 1300 kPa) and/or cyclic strain (5% strain, 1 Hz) influenced bovine tenocyte gene expression. Ten genes were analyzed and none were sensitive to peptide or fiber modulus in the absence of cyclic tensile strain. Genes associated with tendon (SCX and TNMD), collagens (COL1A1, COL3A1, COL11A1), and matrix remodelling (MMP1, MMP2, and TIMP3) were insensitive to cyclic strain. Contrarily, cyclic strain up-regulated IL6 by 30-fold and MMP3 by 10-fold in soft YRGDS fibers. IL6 expression in soft YRGDS fibers was 5.7 and 3.3-fold greater than in soft DGEA fibers and stiff RGD fibers, respectively, under cyclic strain. Our findings suggest that changes in the surrounding matrix can influence catabolic genes in tenocytes when cultured in a complex strain environment mimicking that of tendon, while having minimal effects on tendon and homeostatic genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app