Add like
Add dislike
Add to saved papers

Adsorption of human serum albumin on functionalized single-walled carbon nanotubes reduced cytotoxicity.

With the potential uses of carbon nanotubes (CNTs) in biomedical and biotechnological applications, and the growing concerns about nanotoxicity of these engineered nanoparticles, the importance of protein-nanoparticle interaction has not been well stressed. In this study, we used both experimental and theoretical approaches to investigate the interactions of different functionalized single-walled CNTs (SWCNTs) with human serum albumin (HSA). It was found that the HSA adsorption capacities of CNTs followed the order carboxylated SWCNTs > hydroxylated SWCNTs > amined SWCNTs. The fluorescence intensity of HSA was quenched by all of the three SWCNTs in static mode, which was authenticated by Stern-Volmer calculations. Our molecular dynamics simulations revealed that both atom-atom contact numbers and binding energies between functionalized SWCNTs and HSA played critical roles in determining their adsorption capacity, in agreement with the experimental findings. Additional cytotoxicity assays revealed that coating of carboxylated CNTs with HSA more significantly reduced their cytotoxicity than the other two CNTs, in agreement with their protein adsorption capacities in vitro. These findings will be helpful to clarify the mechanism of interactions of functionalized SWCNTs with human serum proteins, and provide more insight into the understanding of how to design the safe nanoparticles by preconsideration of their interactions with proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app