Add like
Add dislike
Add to saved papers

Duality in Power-Law Localization in Disordered One-Dimensional Systems.

The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, 1/r^{a}. For randomly spaced particles, these models present an effective peculiar disorder that leads to surprising localization properties. We show that in one-dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law localized for any value of a>0. Moreover, we show that our model is an example of a new universality class of models with power-law hopping, characterized by a duality between systems with long-range hops (a<1) and short-range hops (a>1), in which the wave function amplitude falls off algebraically with the same power γ from the localization center.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app