Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of Tetrahydrolipstatin and Stereoderivatives on the Inhibition of Essential Mycobacterium tuberculosis Lipid Esterases.

Biochemistry 2018 April 25
Tetrahydrolipstatin (THL) is a covalent inhibitor of many serine esterases. In mycobacteria, THL has been found to covalently react with 261 lipid esterases upon treatment of Mycobacterium bovis cell lysate. However, the covalent adduct is considered unstable in some cases because of the hydrolysis of the enzyme-linked THL adduct resulting in catalytic turnover. In this study, a library of THL stereoderivatives was tested against three essential Mycobacterium tuberculosis lipid esterases of interest for drug development to assess how the stereochemistry of THL affects respective enzyme inhibition and allows for cross enzyme inhibition. The mycolyltransferase Antigen 85C (Ag85C) was found to be stereospecific with regard to THL; covalent inhibition occurs within minutes and was previously shown to be irreversible. Conversely, the Rv3802 phospholipase A/thioesterase was more accepting of a variety of THL configurations and uses these compounds as alternative substrates. The reaction of the THL stereoderivatives with the thioesterase domain of polyketide synthase 13 (Pks13-TE) also leads to hydrolytic turnover and is nonstereospecific but occurs on a slower, multihour time scale. Our findings suggest the stereochemistry of the β-lactone ring of THL is important for cross enzyme reactivity, while the two stereocenters of the peptidyl arm can affect enzyme specificity and the catalytic hydrolysis of the β-lactone ring. The observed kinetic data for all three target enzymes are supported by recently published X-ray crystal structures of Ag85C, Rv3802, and Pks13-TE. Insights from this study provide a molecular basis for the kinetic modulation of three essential M. tuberculosis lipid esterases by THL and can be applied to increase potency and enzyme residence times and enhance the specificity of the THL scaffold.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app