Add like
Add dislike
Add to saved papers

Reaction Mechanism of Prephenate Dehydrogenase from the Alternative Tyrosine Biosynthesis Pathway in Plants.

Unlike metazoans, plants, bacteria, and fungi retain the enzymatic machinery necessary to synthesize the three aromatic amino acids l-phenylalanine, l-tyrosine, and l-tryptophan de novo. In legumes, such as soybean, alfalfa, and common bean, prephenate dehydrogenase (PDH) catalyzes the tyrosine-insensitive biosynthesis of 4-hydroxyphenylpyruvate, a precursor to tyrosine. The three-dimensional structure of soybean PDH1 was recently solved in complex with the NADP+ cofactor. This structure allowed for the identification of both the cofactor- and ligand-binding sites. Here, we present steady-state kinetic analysis of twenty site-directed active-site mutants of soybean (Glycine max) PDH compared to wild-type. Molecular docking of the substrate, prephenate, into the active site of the enzyme revealed its potential interactions with the active site residues and made a case for the importance of each residue in substrate recognition and/or catalysis, most likely through transition state stabilization. Overall, these results suggested that the active site of the enzyme is highly sensitive to any changes, as even subtle alterations substantially reduced the catalytic efficiency of the enzyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app