Add like
Add dislike
Add to saved papers

Separation of Branched Poly(bisphenol A carbonate) Structures by Solvent Gradient at Near-Critical Conditions and Two-Dimensional Liquid Chromatography.

Analytical Chemistry 2018 April 18
Branching is a molecular metric that strongly influences the application properties of polymers. Consequently, detailed information on the microstructure is required to gain a deeper understanding of structure-property relationships. In the present case, we employ high-performance liquid chromatography to characterize the branching in a poly(bisphenol A carbonate) (PC). To this end, a method was developed based on a mobile phase gradient in a very narrow range (±1.4 vol %) around the point of adsorption (98.9/1.1 vol % chloroform/methyl tert-butyl ether), which we refer to as solvent gradient at near-critical conditions. Application of such gentle gradient enabled separation of PC according to end-groups. The separation mechanism was confirmed by collecting fractions of a separated sample and subsequently analyzing these by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Hyphenating the developed gradient method with size-exclusion chromatography as the second dimension (2D-LC) enabled separation of linear and branched PC chains and determination of the molar mass distribution of the fractions. A reversed elution order was observed for branched species in 2D-LC, meaning that low molar mass chains exhibited higher elution volumes in the first dimension than higher molar masses. This finding was explained by influences of end-groups as well as the architecture of the branched polymer chains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app