Add like
Add dislike
Add to saved papers

Biotin Switch Processing and Mass Spectrometry Analysis of S-Nitrosated Thioredoxin and Its Transnitrosation Targets.

S-Nitrosation is a key posttranslational modification in regulating proteins in both normal physiology and diverse human diseases. To identify novel therapies for human diseases linked to oxidative and nitrosative stress, understanding how cells control S-nitrosation specificity could be critical. Among the enzymes known to control S-nitrosation of proteins, thioredoxin 1 (Trx1), a conserved disulfide reductase, transnitrosates and denitrosates distinct sets of target proteins. To recognize the function of Trx1 in both normal and dysfunctional cells, S-nitrosation targets of Trx1 in different cells need to be identified. However, S-nitrosation is usually too labile to be detected directly by mass spectrometry (MS). Here we present two optimized MS techniques to identify S-nitrosated Trx1 and its transnitrosation targets, using both direct and indirect MS methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app