Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Real-Time Imaging of Nitric Oxide Signals in Individual Cells Using geNOps.

Nitric oxide (NO• ) is a versatile signaling molecule which regulates fundamental cellular processes in all domains of life. However, due to the radical nature of NO• it has a very short half-life that makes it challenging to trace its formation, diffusion, and degradation on the level of individual cells. Very recently, we expanded the family of genetically encoded sensors by introducing a novel class of single fluorescent protein-based NO• probes-the geNOps. Once expressed in cells of interest, geNOps selectively respond to NO• by fluorescence quench, which enables real-time monitoring of cellular NO• signals. Here, we describe detailed methods suitable for imaging of NO• signals in mammalian cells. This novel approach may facilitate a broad range of studies to (re)investigate the complex NO• biochemistry in living cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app