Add like
Add dislike
Add to saved papers

Recombinant PEP-1-SOD1 improves functional recovery after neural stem cell transplantation in rats with traumatic brain injury.

The transplantation of neural stem cells (NSCs) has been demonstrated as a potential treatment strategy for traumatic brain injury (TBI). Cu, Zn-superoxide dismutase (SOD1) is an important antioxidant enzyme that detoxifies intracellular reactive oxygen species, thereby protecting cells from oxidative damage. PEP-1, a peptide carrier, is able to deliver full-length native peptides or proteins into cells. Therefore, the current study investigated the effect of the transplantation of NSCs in combination with PEP-1-SOD1 for the treatment of experimental TBI in rats. Initially, the effect of PEP-1-SOD1 on the proliferation of NSCs was evaluated by MTT assay. PEP-1-SOD1 (0.5, 2.5 and 4.5 µM) significantly increased the proliferation rates of NSCs at 24, 48 and 72 h in a dose-dependent manner. PEP-1-SOD1 also promoted the differentiation of NSCs in vitro . The in vivo experiment showed that PEP-1-SOD1 in combination with NSC transplantation significantly improved the functional recovery of rats following TBI compared with NSC transplantation alone. A significant increase in brain aquaporin-4 (AQP4) mRNA and protein expression levels was observed 4 days post-TBI in PEP-1-SOD1, NSCs and PEP-1-SOD1 + NSCs groups compared with the saline group. The PEP-1-SOD1 + NSCs group showed a further increase of AQP4 mRNA and protein expression levels compared with the NSCs and PEP-1-SOD1 groups. In conclusion, the current data suggests that PEP-1-SOD1 may promote the proliferation and differentiation of NSCs, and thereby improve the functional recovery of TBI model rats following NSCs transplantation through upregulating the expression of AQP4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app