Add like
Add dislike
Add to saved papers

Age-Predicted Maximal Heart Rate in Recreational Marathon Runners: A Cross-Sectional Study on Fox's and Tanaka's Equations.

Age-based prediction equations of maximal heart rate (HRmax ), such as the popular formulas Fox's 220-age, or Tanaka's 208-0.7 × age, have been widely used in various populations. Surprisingly, so far these equations have not been validated in marathon runners, despite the importance of the role of HRmax for training purposes in endurance running. The aim of the present study was to examine the validity of Fox and Tanaka equations in a large sample of women and men recreational marathon runners. Participants ( n = 180, age 43.2 ± 8.5 years, VO2max 46.8 mL/min/kg, finishers in at least one marathon during the last year) performed a graded exercise test on a treadmill, where HRmax was measured. Measured HRmax correlated largely with age in the total sample ( r = -0.50, p < 0.001), women ( r = -0.60, p < 0.001) and men ( r = -0.53, p < 0.001). In women, a large main effect of method on HRmax ( p = 0.001, η2 = 0.294) was shown with measured HRmax lower than Fox-HRmax (-4.8 bpm; -8.4, -1.3) and Tanaka-HRmax (-4.9 bpm; -8.1, -1.8). In men, a moderate effect of assessment method on HRmax was found ( p = 0.001, η2 = 0.066) with measured HRmax higher than Fox-HRmax (+2.8; 1.0, 4.6), Tanaka-HRmax higher than Fox-HRmax (+1.2; 0.7, 1.7). Based on these findings, it was concluded that Fox and Tanaka' formulas overestimated HRmax by ~5 bpm in women, whereas Fox underestimated HRmax in men by ~3 bpm. Thus, we recommend the further use of Tanaka's formula in men marathon runners. In addition, exercise physiologists and sport scientists should consider the observed differences among various assessment methods when performing exercise testing or prescribing training program relying on HR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app