Add like
Add dislike
Add to saved papers

Sorption of antibiotics onto montmorillonite and kaolinite: competition modelling.

Antibiotic contaminants, which are generally present in bi-solute systems, can be competitively adsorbed onto clays. Single- and bi-solute sorptions of sulfadiazine (SDZ) and ciprofloxacin (CIP) onto montmorillonite and kaolinite were investigated at pH values of 5 and 8. Freundlich and Langmuir models were used and fit the experimental data well for single-solute sorption. The sorption isotherms were nonlinear (NF  = 0.265-0.730), and the maximum sorption capacities (qmL ) of the SDZ and CIP onto montmorillonite were higher than those onto kaolinite. The octanol-water distribution ratio (Dow ), cation exchange capacity (CEC), Brunauer-Emmett-Teller (BET) surface area (ABET ), pore size, point of zero charge (pHPZC ), and basal spacing predominantly affected the Freundlich constant (KF ) and qmL of SDZ0 and CIP+ at pH 5 more than SDZ- and CIP± at pH 8. For bi-solute sorption, the presence of CIP inhibited the SDZ sorption onto montmorillonite and kaolinite. Competitive sorption models such as Sheindorf-Rebhun-Sheintuch (SRS), Murali-Aylmore (M-A) and the modified extended Langmuir model (MELM) were used; of these, the MELM provided the best prediction with SDZ sorption onto montmorillonite at pH 8 and CIP onto kaolinite at pH 5 and 8 in SDZ/CIP system occurring synergistically, whereas others occurred antagonistically. The distribution coefficient (Kd ) of the bi-solute sorption decreased with increasing pH in the order cationic > neutral > anionic for SDZ and cationic > zwitterionic > anionic for CIP, which resembled the Kd of single-solute sorption. Fourier transform infrared spectroscopy (FT-IR) spectra indicated that amine in SDZ and keto oxygen in CIP were responsible for the interactions with the montmorillonite and kaolinite.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app