Journal Article
Review
Add like
Add dislike
Add to saved papers

Current advanced therapy cell-based medicinal products for type-1-diabetes treatment.

In the XXI century diabetes mellitus has become one of the main threats to human health with higher incidence in regions such as Europe and North America. Type 1 diabetes mellitus (T1DM) occurs as a consequence of the immune-mediated destruction of insulin producing β-cells located in the endocrine part of the pancreas, the islets of Langerhans. The administration of exogenous insulin through daily injections is the most prominent treatment for T1DM but its administration is frequently associated to failure in glucose metabolism control, finally leading to hyperglycemia episodes. Other approaches have been developed in the past decades, such as whole pancreas and islet allotransplantation, but they are restricted to patients who exhibit frequent episodes of hypoglycemia or renal failure because the lack of donors and islet survival. Moreover, patients transplanted with either whole pancreas or islets require of immune suppression to avoid the rejection of the transplant. Currently, advanced therapy medicinal products (ATMP), such as implantable devices, have been developed in order to reduce immune rejection response while increasing cell survival. To overcome these issues, ATMPs must promote vascularization, guaranteeing the nutritional contribution, while providing O2 until vasculature can surround the device. Moreover, it should help in the immune-protection to avoid acute and chronic rejection. The transplanted cells or islets should be embedded within biomaterials with tunable properties like injectability, stiffness and porosity mimicking natural ECM structural characteristics. And finally, an infinitive cell source that solves the donor scarcity should be found such as insulin producing cells derived from mesenchymal stem cells (MSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Several companies have registered their ATMPs and future studies envision new prototypes. In this review, we will discuss the mechanisms and etiology of diabetes, comparing the clinical trials in the last decades in order to define the main characteristics for future ATMPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app