Journal Article
Review
Add like
Add dislike
Add to saved papers

Revisiting glycoside hydrolase family 20 β-N-acetyl-d-hexosaminidases: Crystal structures, physiological substrates and specific inhibitors.

Glycoside hydrolase family 20 β-N-acetyl-d-hexosaminidases (GH20s) catalyze the hydrolysis of glycosidic linkages in glycans, glycoproteins and glycolipids. The diverse substrates of GH20s account for their various roles in many important bioprocesses, such as glycoprotein modification, glycoconjugate metabolism, gamete recognition and chitin degradation in fungal cell walls and arthropod exoskeletons. Defects in human GH20s cause lysosomal storage diseases, Alzheimer's disease and osteoarthritis. Similarly, lower levels of GH20s arrest arthropod molting. Although GH20s are promising targets for drug and agrochemical development, designing bioactive molecules to target one specific enzyme is challenging because GH20s share a conserved catalytic mechanism. With the development of structural biology, the last two decades have witnessed a dramatic increase in crystallographic investigations of liganded and unliganded GH20s, providing core information for rational molecular designs. This critical review summarizes recent research advances in GH20s, with a focus on their structural basis of substrate specificity as well as on inhibitor design. As more crystal structures of targeted GH20s are determined and analyzed, dynamics of their catalysis and inhibition will also be elucidated, which will facilitate the development of new drugs, pesticides and agrochemicals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app