Add like
Add dislike
Add to saved papers

Role of nitric oxide and WNK-SPAK/OSR1-KCC2 signaling in daily changes in GABAergic inhibition in the rat dorsal raphe neurons.

Serotonergic neurons in the dorsal raphe nucleus (DRN) act as wake-inducing neurons in the sleep-wake cycle and are controlled by gamma-aminobutyric acid (GABA) synaptic inputs. We investigated daily changes in GABAergic inhibition of the rat DRN neurons and the role of nitric oxide (NO) and cation-chloride co-transporters in the GABAergic action. Neuronal NO synthase (nNOS) was co-expressed in 74% of serotonergic DRN neurons and nNOS expression was higher during daytime (the sleep cycle) than that during nighttime (the wake cycle). GABAergic hyperpolarization of DRN neurons produced by GABAA receptor agonist muscimol was greater and the equilibrium potential of muscimol showed a hyperpolarizing shift during daytime compared to that during nighttime. Expression levels of potassium-chloride co-transporter 2 (KCC2) were higher during daytime than that during nighttime, whereas there were no changes in sodium-potassium-chloride co-transporter 1 (NKCC1) expression. With-no-lysine kinase (WNK) isoform 1 was more highly expressed during daytime than that during nighttime. Total Ste20-related proline alanine rich kinase (SPAK) and oxidative stress response kinase 1 (OSR1) were also higher during daytime than during nighttime, while there were no changes in phosphorylated SPAK and OSR1. Consistent with the findings during the sleep-wake cycle, ex vivo treatment of DRN slices with a NO donor sodium nitroprusside (SNP) increased the expression of KCC2, WNK1, WNK2, WNK3, SPAK, and OSR1, whilst decreasing phosphorylated SPAK. These results suggest that GABAergic synaptic inhibition of DRN serotonergic neurons shows daily changes during the sleep-wake cycle, which might be regulated by daily changes in nNOS-derived NO and WNK-SPAK/OSR1-KCC2 signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app