Add like
Add dislike
Add to saved papers

Synthesis and Characterization of Temperature-Sensitive and Chemically Cross-Linked Poly( N-isopropylacrylamide)/Photosensitizer Hydrogels for Applications in Photodynamic Therapy.

Biomacromolecules 2018 May 15
A novel poly( N-isopropylacrylamide) (PNIPAM) hydrogel containing different photosensitizers (protoporphyrin IX (PpIX), pheophorbide a (Pba), and protoporphyrin IX dimethyl ester (PpIX-DME)) has been synthesized with a significant improvement in water solubility and potential for PDT applications compared to the individual photosensitizers (PSs). Conjugation of PpIX, Pba, and PpIX-DME to the poly( N-isopropylacrylamide) chain was achieved using the dispersion polymerization method. This study describes how the use of nanohydrogel structures to deliver a photosensitizer with low water solubility and high aggregation tendencies in polar solvents overcomes these limitations. FT-IR spectroscopy, UV-vis spectroscopy, 1 H NMR, fluorescence spectroscopy, SEM, and DLS analysis were used to characterize the PNIPAM-photosensitizer nanohydrogels. Spectroscopic studies indicate that the PpIX, Pba, and PpIX-DME photosensitizers are covalently conjugated to the polymer chains, which prevents aggregation and thus allows significant singlet oxygen production upon illumination. Likewise, the lower critical solution temperature was raised to ∼44 °C in the new PNIPAM-PS hydrogels. The PNIPAM hydrogels are biocompatible with >90% cell viability even at high concentrations of the photosensitizer in vitro. Furthermore, a very sharp onset of light-dependent toxicity for the PpIX-based nanohydrogel in the nanomolar range and a more modest, but significant, photocytotoxic response for Pba-PNIPAM and PpIX-DME-PNIPAM nanohydrogels suggest that the new hydrogels have potential for applications in photodynamic therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app