Add like
Add dislike
Add to saved papers

Li Distribution Heterogeneity in Solid Electrolyte Li 10 GeP 2 S 12 upon Electrochemical Cycling Probed by 7 Li MRI.

All-solid-state rechargeable batteries embody the promise for high energy density, increased stability, and improved safety. However, their success is impeded by high resistance for mass and charge transfer at electrode-electrolyte interfaces. Li deficiency has been proposed as a major culprit for interfacial resistance, yet experimental evidence is elusive due to the challenges associated with noninvasively probing the Li distribution in solid electrolytes. In this Letter, three-dimensional 7 Li magnetic resonance imaging (MRI) is employed to examine Li distribution homogeneity in solid electrolyte Li10 GeP2 S12 within symmetric Li/Li10 GeP2 S12 /Li batteries. 7 Li MRI and the derived histograms reveal Li depletion from the electrode-electrolyte interfaces and increased heterogeneity of Li distribution upon electrochemical cycling. Significant Li loss at interfaces is mitigated via facile modification with a poly(ethylene oxide)/bis(trifluoromethane)sulfonimide Li salt thin film. This study demonstrates a powerful tool for noninvasively monitoring the Li distribution at the interfaces and in the bulk of all-solid-state batteries as well as a convenient strategy for improving interfacial stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app