Add like
Add dislike
Add to saved papers

Process optimization of CNP removal from industrial soft drink wastewater in a single up flow A2O with continuous feed and intermittent discharge regime.

Simultaneous removal of carbon and nutrients (CNP) in a single laboratory-scale bioreactor is advantageous in terms of reactor volume and energy consumption. In this study, an innovative up-flow anaerobic/anoxic/aerobic (A2O) single bioreactor with continuous feed and intermittent discharge (CFID) regime equipped with a movable aerator in the reactor height for simultaneous removal of CNP from soft drinks wastewater was successfully designed, fabricated and operated. The effects of four independent variables, i.e. hydraulic retention time (HRT), aerator height, biomass concentration and nitrogen/soluble chemical oxygen demand (N/sCOD) ratio at three levels in the range of 4-8 h, 37-55.5 cm, 4,000-6,000-1 , and 0.05-0.2, respectively, on eight process responses were investigated. The central composite design (CCD) and response surface methodology (RSM) were applied to design the experimental conditions, model the obtained data, and optimize the process. The bioreactor provides three conditions with different dissolved oxygen (DO) (anaerobic, anoxic and aerobic) in a single bioreactor by placing the aerator in the middle of the reactor. As a result, the maximum sCOD, total nitrogen (TN) and total phosphorus (TP) removal were about 100, 92 and 41%, respectively. The optimum region obtained was an HRT of 5-11 h, a mixed liquor suspended solids (MLSS) concentration of 4,000-4,700 mgL- 1 , and an aerator height of 46.25 cm, at the N/sCOD ratio of 0.1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app