Add like
Add dislike
Add to saved papers

Hyaluronic acid functionalized nanostructured sensing interface for voltammetric determination of microRNA in biological media with ultra-high sensitivity and ultra-low fouling.

Mikrochimica Acta 2018 Februrary 6
An electrochemical biosensor for the detection of microRNA was prepared via chemical grafting of a Methylene Blue labeled reporter (MB-Rep) duplex onto a nanostructured surface that was obtained by electrodeposition of cobalt oxide and poly(o-phenylenediamine). This is followed by the attachment of hyaluronic acid and gold nanoclusters. In the presence of the target (microRNA), the probe-target duplex and the MB-Rep hairpin are formed. These will displace the labeled reporter from the sensor surface, and this results in a decrease of the amperometric signal for MB at a typical working voltage of -0.28 V (vs. Ag/AgCl). The electrode modified with hyaluronic acid possesses a large electroactive surface area and an excellent antifouling property. This makes it useful for ultrasensitive quantitation of microRNA even in complex biological media. The sensor has a linear response in the 100 f. to 0.1 μM microRNA concentration range, and a 33.3 f. detection limit. It was successfully applied to the determination of microRNA in cancer cells. Graphical abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app