Add like
Add dislike
Add to saved papers

Aptamer based vanillin sensor using an ion-sensitive field-effect transistor.

Mikrochimica Acta 2017 December 3
An aptamer for vanillin was obtained and then used for the development of an aptasensor based on an ion-sensitive field-effect transistor (ISFET). This aptamer (a single-stranded DNA;ssDNA) was selected using the Capture-SELEX protocol, which suites well for selection of aptamers to small molecules. Among six aptamer candidates, the aptamer Van_74 with the highest affinity for vanillin was chosen (elution of 35% of the aptamer from a solid support in the presence of 2 mM of vanillin). Van_74 was characterized using nondenaturating PAGE of washouts from magnetic beads. It is shown that Van_74 binds to vanillin with an dissociation constant of >7.8 μM (determined by nondenaturating PAGE) and it was specific to vanillin in comparison with interferents: benzaldehyde, guaiacol, furaneol, ethyl guaiacol and ethyl vanillin. Also it was shown that change of buffer composition greatly affected the binding ability of Van_74. For biosensor fabrication aptamer was immobilised on the Ta2 O5 -sensitive surface of the ISFET via "click-chemistry". Detection scheme implied dehybridisation of the ssDNA probe from the aptamer and release in the solution during the addition of vanillin. As a result, the surface potential increase upon vanillin binding with the aptamer was detected by the transistor. The biosensor had a detection limit of 1.55 × 10-7  M and a dynamic range from 1.55 × 10-7  M to 1 × 10-6  M. Effective constant Kd,eff for vanillin binding on biosensor surface was calculated to be (9 ± 3) × 10-7  M. This allows selective detection of vanillin in the mixture of interferents and in samples of coffee extract. Graphical abstract A biosensor for vanillin was developed on the basis of an aptamer that was obtained via Capture-SELEX and by using an ISFET. This biosensor can be used for vanillin detection in presence of interferents and in real sample using an approach of ssDNA probe dehybridization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app