Add like
Add dislike
Add to saved papers

Patterning artificial lipid bilayer on nanostructured surfaces.

Artificial lipid bilayer on solid substrate plays an important role as an interface between nanotechnology and biology. In this study, grid structures were patterned on Au-Nb-glass substrate and artificial bilayer was prepared on these structures. The fluidity was checked using fluorescence recovery after photobleaching (FRAP), and neuronal adhesion was monitored on such structure using EphrinA5-tethered lipid bilayer. EphrinA5 is a ligand that binds to the Eph receptors of rat cortical neurons and influences cellular adhesion. Our result elucidated that influence of these nanopatterned protein-tethered lipid bilayer on cellular guidance and signaling can address many underlying mechanisms of cellular functioning and help us to understand and differentiate the signaling procedure in cancer and neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app