Add like
Add dislike
Add to saved papers

Decreased prefrontal oxygenation elicited by stimulation of limb mechanosensitive afferents during cycling exercise.

Our laboratory reported using near-infrared spectroscopy that feedback from limb mechanoafferents may decrease prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) during the late period of voluntary and passive cycling. To test the hypothesis that the decreased Oxy-Hb of the prefrontal cortex would be augmented depending on the extent of limb mechanoafferent input, the prefrontal Oxy-Hb response was measured during motor-driven one- and two-legged passive cycling for 1 min at various revolutions of pedal movement in 19 subjects. Furthermore, we examined whether calculated tissue oxygenation index (TOI) decreased during passive cycling as the Oxy-Hb did, simultaneously assessing blood flows of extracranial cutaneous tissue and the common and internal carotid arteries (CCA and ICA) with laser and ultrasound Doppler flowmetry. Minute ventilation and cardiac output increased and peripheral resistance decreased during passive cycling, depending on both revolutions of pedal movement and number of limbs, whereas mean arterial blood pressure did not change. Passive cycling did not change end-tidal CO2 , suggesting absence of a hypocapnic change. Prefrontal Oxy-Hb decreased during passive cycling, being in proportion to revolution of pedal movement but not number of cycling limbs. In addition, prefrontal TOI decreased during passive cycling as Oxy-Hb did, whereas blood flows of forehead cutaneous tissue, CCA, and ICA did not change significantly. Thus, a decrease in Oxy-Hb reflected a decrease in tissue blood flow of the intracerebral vasculature but not the extracerebral compartment. It is likely that feedback from mechanoafferents decreased regional cerebral blood flow of the prefrontal cortex in relation to the revolutions of pedal movement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app