Add like
Add dislike
Add to saved papers

On-pump transapical cardioscopic mitral valve replacement with cardiac arrest: short-term results in a porcine survival model.

OBJECTIVES: Favourable outcomes with mitral annuloplasty have been achieved with transapical cardioscopic (TAC) surgery in a survival animal model. In addition, experimental TAC on a non-survival animal model also showed adequate access to remove the native mitral valve and implant a prosthetic valve, but the surgical procedure took a long time and lacked follow-up data. The goal of this study was to develop a clinically translatable TAC mitral valve replacement (MVR) procedure using technical and instrumental refinements to reduce the surgical time and to evaluate functional recovery and short-term durability using a survival porcine model. We hypothesized that MVR could be achieved with subannular implantation of the bioprosthesis via the TAC approach.

METHODS: TAC MVR using the Hancock II™ (Medtronic)® mitral prosthesis was performed in 6 pigs via an incision over the xiphoid process, under cardiopulmonary bypass and cardiac arrest. COR-KNOT® and minimally invasive cardiac surgery instruments were used. Haemodynamics, echocardiography, cardiac computed tomography, ventriculography and electrocardiography were used to evaluate the function of the mitral prosthesis and left ventricle, coronary system and conduction system in the perioperative period and 4 weeks later.

RESULTS: A postimplant examination showed that the mitral prosthesis was competent, without a paravalvular leak. The left ventricular ejection fraction was comparable to preoperative values (65.2 ± 4.1 vs 67.2 ± 7.9). The bypass, cross-clamp and implant times were 177.2 ± 44.2 min, 135.3 ± 47.6 min and 94.0 ± 41.2 min, respectively. The prosthesis was in a good position. The apical scar was intact and not aneurysmal 4 weeks after the implant. The valve was properly sutured to the annulus, without a postimplant paravalvular leak. All animals recovered after 1 month of follow-up with preserved ventricular function and normal wall motion.

CONCLUSIONS: We successfully managed to replace the mitral valve with a biological prosthesis via the apex with encouraging bypass and cross-clamp times. This technique may provide an alternative for a selected group of patients with diseased mitral valves who have indications for MVR and still in a high-risk redo setting with conventional sternotomy or minimally invasive cardiac surgery-MVR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app