Add like
Add dislike
Add to saved papers

Noradrenergic Activity in the Human Brain: A Mechanism Supporting the Defense Against Hypoglycemia.

Context: Hypoglycemia, one of the major factors limiting optimal glycemic control in insulin-treated patients with diabetes, elicits a brain response to restore normoglycemia by activating counterregulation. Animal data indicate that local release of norepinephrine (NE) in the hypothalamus is important for triggering hypoglycemia-induced counterregulatory (CR) hormonal responses.

Objective: To examine the potential role of brain noradrenergic (NA) activation in humans during hypoglycemia.

Design: A hyperinsulinemic-hypoglycemic clamp was performed in conjunction with positron emission tomographic imaging.

Participants: Nine lean healthy volunteers were studied during the hyperinsulinemic-hypoglycemic clamp.

Design: Participants received intravenous injections of (S,S)-[11C]O-methylreboxetine ([11C]MRB), a highly selective NE transporter (NET) ligand, at baseline and during hypoglycemia.

Results: Hypoglycemia increased plasma epinephrine, glucagon, cortisol, and growth hormone and decreased [11C]MRB binding potential (BPND) by 24% ± 12% in the raphe nucleus (P < 0.01). In contrast, changes in [11C]MRB BPND in the hypothalamus positively correlated with increments in epinephrine and glucagon levels and negatively correlated with glucose infusion rate (all P < 0.05). Furthermore, in rat hypothalamus studies, hypoglycemia induced NET translocation from the cytosol to the plasma membrane.

Conclusions: Insulin-induced hypoglycemia initiated a complex brain NA response in humans. Raphe nuclei, a region involved in regulating autonomic output, motor activity, and hunger, had increased NA activity, whereas the hypothalamus showed a NET-binding pattern that was associated with the individual's CR response magnitude. These findings suggest that NA output most likely is important for modulating brain responses to hypoglycemia in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app