JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Highly-sensitive detection of Salmonella typhi in clinical blood samples by magnetic nanoparticle-based enrichment and in-situ measurement of isothermal amplification of nucleic acids.

Enteric fever continues to be a major cause of mortality and morbidity globally, particularly in poor resource settings. Lack of rapid diagnostic assays is a major driving factor for the empirical treatment of enteric fever. In this work, a rapid and sensitive method 'Miod' 'has been developed. Miod includes a magnetic nanoparticle-based enrichment of target bacterial cells, followed by cell lysis and loop-mediated isothermal amplification (LAMP) of nucleic acids for signal augmentation along with concurrent measurement of signal via an in-situ optical detection system. To identify positive/negative enteric fever infections in clinical blood samples, the samples were processed using Miod at time = 0 hours and time = 4 hours post-incubation in blood culture media. Primers specific for the STY2879 gene were used to amplify the nucleic acids isolated from S. typhi cells. A limit of detection of 5 CFU/mL was achieved. No cross-reactivity of the primers were observed against 106 CFU/mL of common pathogenic bacterial species found in blood such as E. coli, P. aeruginosa, S. aureus, A. baumanni, E. faecalis, S. Paratyphi A and K. pneumonia. Miod was tested on 28 human clinical blood samples. The detection of both pre-and post-four-hours incubation confirmed the presence of viable S. typhi cells and allowed clinical correlation of infection. The positive and negative samples were successfully detected in less than 6 hours with 100% sensitivity and specificity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app