Add like
Add dislike
Add to saved papers

Placental surface area mediates the association between FGFR2 methylation in placenta and full-term low birth weight in girls.

Background: Fibroblast growth factor receptor 2 ( FGFR2 ) gene encodes a protein of the fibroblast growth factor receptor family. FGFR2 gene expression is associated with the regulation of implantation process of placenta which plays a vital role in fetal growth. DNA methylation is widely known as a mechanism of fetal growth. However, it is unclear whether and how DNA methylation of FGFR2 gene in the placenta is associated with full-term low birth weight. This case-control study aims to explore the links between FGFR2 methylation in placenta and full-term low birth weight and to further examine the mediation effect of placental surface area on this association.

Results: We conducted analyses for each of the five valid CpG sites at FGFR2 in 165 mother-baby pairs (86 FT-LBW vs. 79 FT-NBW) and found that per one standard deviation increase in the DNA methylation of CpG 11 at FGFR2 was associated with 1.64-fold higher risk of full-term low birth weight (OR = 1.64, 95% CI = [1.07, 2.52]) and 0.18 standard deviation decrease in placental surface area ( β  = - 0.18; standard error = 0.08, p  = 0.02). The mediation effect of placental surface area on the association between DNA methylation and full-term low birth weight was significant in girls (OR = 1.38, 95% CI = [1.05, 1.80]) but not in boys. The estimated mediation proportion was 48.38%.

Conclusion: Our findings suggested that placental surface area mediated the association between DNA methylation of FGFR2 in placenta and full-term low birth weight in a sex-specific manner. Our study supported the importance of placental epigenetic changes in placental development and fetal growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app