JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

GRAIN SIZE AND NUMBER1 Negatively Regulates the OsMKKK10-OsMKK4-OsMPK6 Cascade to Coordinate the Trade-off between Grain Number per Panicle and Grain Size in Rice.

Plant Cell 2018 April
Grain number and size are interactive agronomic traits that determine grain yield. However, the molecular mechanisms responsible for coordinating the trade-off between these traits remain elusive. Here, we characterized the rice ( Oryza sativa ) grain size and number1 ( gsn1 ) mutant, which has larger grains but sparser panicles than the wild type due to disordered localized cell differentiation and proliferation. GSN1 encodes the mitogen-activated protein kinase phosphatase OsMKP1, a dual-specificity phosphatase of unknown function. Reduced expression of GSN1 resulted in larger and fewer grains, whereas increased expression resulted in more grains but reduced grain size. GSN1 directly interacts with and inactivates the mitogen-activated protein kinase OsMPK6 via dephosphorylation. Consistent with this finding, the suppression of mitogen-activated protein kinase genes OsMPK6 , OsMKK4 , and OsMKKK10 separately resulted in denser panicles and smaller grains, which rescued the mutant gsn1 phenotypes. Therefore, OsMKKK10-OsMKK4-OsMPK6 participates in panicle morphogenesis and acts on a common pathway in rice. We confirmed that GSN1 is a negative regulator of the OsMKKK10-OsMKK4-OsMPK6 cascade that determines panicle architecture. The GSN1-MAPK module coordinates the trade-off between grain number and grain size by integrating localized cell differentiation and proliferation. These findings provide important insights into the developmental plasticity of the panicle and a potential means to improve crop yields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app