Add like
Add dislike
Add to saved papers

Approaches to Anesthetic Mechanisms: The C. elegans Model.

Understanding the mechanisms of volatile anesthetics has been a complex problem that has intrigued investigators for decades. Through the use of relatively simple model organisms-including the nematode Caenorhabditis elegans-progress has been made. Like any model system, C. elegans has both advantages and disadvantages, which are discussed in this chapter. Methods are provided for exposing worms to volatile anesthetics in airtight glass chambers, and for measuring the concentrations of anesthetic in the chambers by gas chromatography. In addition, various behavioral assays are described for characterizing the worms' responses to anesthetics. C. elegans identified proteins that play a role in anesthetic sensitivity that are highly conserved in other organisms, including humans. With precisely characterized neural development, C. elegans has also afforded an excellent opportunity to study anesthetic-induced neurotoxicity. Continued progress in understanding anesthetic action is anticipated from the ongoing study of C. elegans and other animal models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app