Add like
Add dislike
Add to saved papers

Preliminary Porcine In Vivo Evaluation of a Telerobotic System for Transurethral Bladder Tumor Resection and Surveillance.

INTRODUCTION: Transurethral resection of bladder tumors (TURBTs) can be a challenging procedure, primarily due to limitations in tooltip dexterity, visualization, and lack of tissue depth information. A transurethral robotic system was developed to revolutionize TURBTs by addressing some of these limitations. The results of three pilot in vivo porcine studies using the novel robotic system are presented and potential improvements are proposed based on experimental observations.

MATERIALS AND METHODS: A transvesical endoscope with a mounted optically tracked camera was placed through the bladder of the swine under general anesthesia. Simulated bladder lesions were created by injecting HistoGel processing gel mixed with blue dye, transabdominally, into various locations in the bladder wall under endoscopic visualization. A 7-degree-of-freedom (DoF) robot was then used for transurethral resection/ablation of these simulated tumors. An independent 2-DoF distal laser arm (DLA) was deployed through the robot for laser ablation and was assisted by a manually controlled gripper for en bloc resection attempts.

RESULTS: Lesions were created and ablated using our novel endoscopic robot in the swine bladder. Full accessibility of the bladder, including the bladder neck and dome, was demonstrated without requiring bladder deflation or pubic compression. Simulated lesions were ablated using the holmium laser. En bloc resection was demonstrated using the DLA and a manual grasper.

CONCLUSION: Feasibility of robot-assisted en bloc resection was demonstrated. Main challenges were lack of depth perception and visual occlusion induced by the transvesical endoscope. Recommendations are given to enhance robot-assisted TURBTs. Lessons learned through these pilot swine studies verify the feasibility of robot-assisted TURBTs while informing designers about critical aspects needed for future clinical deployment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app