Add like
Add dislike
Add to saved papers

Wnt Signaling Activates TP53-Induced Glycolysis and Apoptosis Regulator and Protects Against Cisplatin-Induced Spiral Ganglion Neuron Damage in the Mouse Cochlea.

AIMS: Cisplatin can damage spiral ganglion neurons (SGNs) and cause sensorineural hearing loss. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea, but the role of Wnt signaling in protecting SGNs from cisplatin treatment has not yet been elucidated. This study was designed to investigate the neuroprotective effects of Wnt signaling against cisplatin-induced SGN damage.

RESULTS: First, we found that Wnt signaling was activated in SGNs after cisplatin treatment. Next, we discovered that overexpression (OE) of Wnt signaling in SGNs reduced cisplatin-induced SGN loss by inhibiting caspase-associated apoptosis, thus preventing the loss of SGN function after cisplatin treatment. In contrast, inhibition of Wnt signaling increased apoptosis, made SGNs more vulnerable to cisplatin treatment, and exacerbated hearing loss. TP53-induced glycolysis and apoptosis regulator (TIGAR), which scavenges intracellular reactive oxygen species (ROS), was upregulated in SGNs in response to cisplatin administration. Wnt/β-catenin activation increased TIGAR expression and reduced ROS level, while inhibition of Wnt/β-catenin in SGNs reduced TIGAR expression and increased the ROS level. Moreover, OE of TIGAR reduced ROS and decreased caspase 3 expression, as well as increased the survival of SGNs in Wnt-inhibited SGNs. Finally, antioxidant treatment rescued the more severe SGN loss induced by β-catenin deficiency after cisplatin treatment. Innovation and Conclusion: This study is the first to indicate that Wnt signaling activates TIGAR and protects SGNs against cisplatin-induced damage through the inhibition of oxidative stress and apoptosis in SGNs, and this might offer novel therapeutic targets for the prevention of SGN injury. Antioxid. Redox Signal. 00, 000-000.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app