Add like
Add dislike
Add to saved papers

Synthesis and self-assembling properties of 4,6-O-benzylidene acetal protected D-glucose and D-glucosamine β-1,2,3-triazole derivatives.

Sugar based low molecular weight gelators (LMWGs) are useful small molecules that can form reversible supramolecular gels with many applications. Selective functionalization of common monosaccharides has resulted in several classes of effective LMWGs. Recently we found that certain peracetylated sugars containing anomeric triazole functional groups were effective gelators. In this study we synthesized two series of 4,6-O-benzylidene acetal protected β-1,2,3-triazolyl glycoside of D-glucose and N-acetyl D-glucosamine derivatives and evaluated their self-assembling properties in a few solvents. Several gelators were obtained and the gelation properties of these compounds rely on the structures of the 4-triazolyl substituents. Typically, alkyl derivatives resulted in effective gelation in organic solvents and aqueous mixtures of ethanol and dimethyl sulfoxide. But further acetylation of these compounds resulted in loss of gelation properties. The gels were characterized using optical microscopy, rheology, and FTIR spectroscopy. We also analyzed the molecular assemblies, using 1 H NMR spectroscopy to probe the influences of the hydroxyl, amide, and triazole functional groups. Naproxen was used as a model drug and it formed co-gels with compound 25 in DMSO water mixtures. Using UV spectroscopy, we found that naproxen was slowly released from the gel to aqueous solution. The general structure and gelation trend obtained here can be useful in designing sugar based biomaterials. We expect that further structural optimization can lead to more effective gelators that are compatible with different drug molecules for encapsulation and sustained release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app