Add like
Add dislike
Add to saved papers

Predominated Thermodynamically Controlled Reactions for Suppressing Cross Nucleations in Formation of Multinary Substituted Tetrahedrite Nanocrystals.

Group I-II-V-VI semiconducting Cu12- x M x Sb4 S13 (M = ZnII , CdII , MnII and CuII ) substituted tetrahedrite nanostructures remain a new class of multinary materials that have not been widely explored yet. Having different ions, the formation process of these nanostructures always has the possibility of formation of cross nucleations. Minimizing the reaction time, herein, a predominantly thermodynamic control approach is reported, which decouples the quaternary nucleations from their possible cross nucleations. As a consequence, possible cross nucleations were prevented and a series of nearly monodisperse intriguing substituted tetrahedrite nanostructures were formed. The possible LaMer plot for the single- and multimaterial nucleations is also proposed. Further, bandgaps of all of these new materials are calculated, and preliminarily, the applicability of these materials is tested for photoelectrochemical water splitting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app