Add like
Add dislike
Add to saved papers

Protectin DX attenuates LPS-induced inflammation and insulin resistance in adipocytes via AMPK-mediated suppression of the NF-κB pathway.

Several studies have demonstrated that protectins, ω-3 fatty acid-derived proresolution mediators, may ameliorate inflammation. Recently, protectin DX (PDX) was also reported to attenuate inflammation and insulin resistance in several cell types. However, the effects of PDX on inflammation in adipocytes remain ambiguous. In this study, we found that PDX treatment suppressed adipogenesis and lipid accumulation during 3T3-L1 differentiation. Treatment of differentiated 3T3-L1 cells with PDX stimulated AMP-activated protein kinase (AMPK) phosphorylation in a dose-dependent manner. PDX-induced AMPK phosphorylation blocked lipopolysaccharide (LPS)-induced secretion of proinflammatory cytokines, such as tumor necrosis factor-α and monocyte chemoattractant protein-1. Treatment of 3T3-L1 cells with PDX alleviated LPS-induced NF-κB and inhibitory factor κB phosphorylation. Furthermore, PDX treatment diminished LPS-induced impairment of insulin signaling and insulin-stimulated glucose uptake, as well as fatty acid oxidation. These effects were decreased by silencing AMPK expression with small-interfering RNA. In conclusion, the current findings suggest that PDX attenuates inflammation and insulin resistance in adipocytes via an AMPK-dependent pathway, which in turn provides evidence that PDX has anti-inflammatory and antidiabetic effects in adipocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app