Add like
Add dislike
Add to saved papers

Morphine reduces mouse microglial engulfment induced by lipopolysaccharide and interferon-γ via δ opioid receptor and p38 mitogen-activated protein kinase.

Objective To investigate the effects of morphine on microglial phagocytosis during neuroinflammation. Methods C8-B4 mouse microglial cells were exposed to various concentrations of morphine after the stimulation with lipopolysaccharide and interferon-γ and then fluorescent immunostaining was performed to assess the percentage of microglia that engulfed fluorescent microspheres in total microglia. Naloxone, β funaltrexamine, or naltrindole was used with 1 μM morphine to assess the involvement of specific opioid receptor. P38 and phosphorylated p38 were determined by Western blotting. A p38 mitogen-activated protein kinase (MAPK) activator (anisomycin 0.1 μM) or inhibitor (SB 203580, 20 μM) was used to determine the involvement of p38 MAPK pathway. Results Morphine decreased lipopolysaccharide and interferon-γ-induced microglial engulfment except the highest concentration (10 μM) and both naloxone and naltrindole (a selective δ opioid receptor antagonist) attenuated morphine effect (p < 0.001). The phosphorylated p38 was up-regulated in lipopolysaccharide and interferon-γ group compared with control group (p < 0.001). This up-regulation was decreased by 1 μM morphine (p < 0.001). However, naltrindole abolished this morphine effect (p = 0.015). SB203580 blocked the increased microglial engulfment induced by lipopolysaccharide and interferon-γ (p < 0.001); whereas, anisomycin enhanced the morphine-induced decrease of engulfment (p < 0.001). Conclusion Morphine reduced mouse microglial engulfment induced by lipopolysaccharide and interferon-γ. This morphine effect seems to be mediated by δ opioid receptor and via p38 MAPK inhibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app