Add like
Add dislike
Add to saved papers

Structure and function of photosystem I in Cyanidioschyzon merolae.

The evolution of photosynthesis from primitive photosynthetic bacteria to higher plants has been driven by the need to adapt to a wide range of environmental conditions. The red alga Cyanidioschyzon merolae is a primitive organism, which is capable of performing photosynthesis in extreme acidic and hot environments. The study of its photosynthetic machinery may provide new insight on the evolutionary path of photosynthesis and on light harvesting and its regulation in eukaryotes. With that aim, the structural and functional properties of the PSI complex were investigated by biochemical characterization, mass spectrometry, and X-ray crystallography. PSI was purified from cells grown at 25 and 42 °C, crystallized and its crystal structure was solved at 4 Å resolution. The structure of C. merolae reveals a core complex with a crescent-shaped structure, formed by antenna proteins. In addition, the structural model shows the position of PsaO and PsaM. PsaG and PsaH are present in plant complex and are missing from the C. merolae model as expected. This paper sheds new light onto the evolution of photosynthesis, which gives a strong indication for the chimerical properties of red algae PSI. The subunit composition of the PSI core from C. merolae and its associated light-harvesting antennae suggests that it is an evolutionary and functional intermediate between cyanobacteria and plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app