Add like
Add dislike
Add to saved papers

Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice.

There has been growing interest in the use of nanocellulose-based substrate for surface-enhanced Raman spectroscopy (SERS) applications. This study aimed to use cellulose nanofibers (CNF) to develop novel CNF-based nanocomposite as a SERS substrate. CNF were cationized with ammonium ions and then interacted with citrate-stabilized gold nanoparticles (AuNPs) via electrostatic attraction to form uniform nanocomposites. The CNF-based nanostructures were loaded with AuNPs that were firmly adhered on the CNF surfaces, providing a three-dimensional plasmonic SERS platform. A Raman-active probe molecule, 4-aminothiophenol, was selected to evaluate the sensitivity and reproducibility of CNF-based SERS substrate. The intensity of SERS spectra obtained from CNF/AuNP nanocomposite was 20 times higher than that from the filter paper/AuNP substrate. The SERS intensity map demonstrates good uniformity of the CNF/AuNP substrate. CNF/AuNP nanocomposites were used in rapid detection of thiram in apple juice by SERS and a limit of detection of 52 ppb of thiram was achieved. These results demonstrate that CNF/AuNP nanocomposite can be used for rapid and sensitive detection of pesticides in food products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app