Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chlorophyll, carotenoid and vitamin C metabolism regulation in Actinidia chinensis 'Hongyang' outer pericarp during fruit development.

Ascorbic acid (AsA), chlorophyll and carotenoid contents and their associated gene expression patterns were analysed in Actinidia chinensis 'Hongyang' outer pericarp. The results showed chlorophyll degradation during fruit development and softening, exposed the yellow carotenoid pigments. LHCB1 and CLS1 gene expressions were decreased, while PPH2 and PPH3 gene expressions were increased, indicating that downregulation of chlorophyll biosynthesis and upregulation of its degradation, caused chlorophyll degradation. A decrease in the expression of the late carotenoid biosynthesis and maintenance genes (LCYB1, LCYE1, CYP1, CYP2, ZEP1, VDE1, VDE2, and NCED2) and degradation gene (CCD1), showed biosynthesis and degradation of carotenoid could be regulatory factors involved in fruit development. Most genes expression data of L-galactose and recycling pathway were agreement with the AsA concentrations in the fruit, suggesting these are the predominant pathways of AsA biosynthesis. GMP1, GME1 and GGP1 were identified as the key genes controlling AsA biosynthesis in 'Hongyang' outer pericarp.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app