Add like
Add dislike
Add to saved papers

Chemical Transformations in Confined Space of Coordination Architectures.

Inorganic Chemistry 2018 April 17
The scholastic significance of supramolecular chemistry continues to grow with the recent development of catalytic transformations in confined space of supramolecular architectures. It has come a long way from a natural cavity containing molecules to modern smart materials capable of manipulating reaction pathways. The rise of self-assembled coordination complexes provided a diverse array of host structures. Starting from purely organic compounds to metalloligand surrogates, supramolecular host cavities were tuned according to the requirement of the reactions. The understanding of their participation in a reaction led to better usage of those assemblies for specific reaction sequences. Commencing from cyclodextrin, a wide range of organic molecules was used for cage-catalyzed organic transformations. However, difficulties in synthesis and a tedious purification procedure led chemists to choose a different pathway of metal-ligand coordination-driven self-assembly. The latter stood out as a potential replacement of the organic cages, overcoming the previous drawbacks. In the glut of different transition-metal assemblies used for catalytic transformations, many of them showed chemo- and stereoselective products. However, the small cavity size in some of them led to premature failure of the reaction. In that context, "molecular barrels" showed good efficacy for the catalytic reaction sequence. The large cavity size and bigger orifice for intake of the substrate and easy release of the product made them a better choice for catalysis. Additionally these are mostly used in aqueous media, which reinforces the idea of green and environmentally nonhazardous chemistry. In this Viewpoint, we discuss the use of metal-ligand coordination-driven self-assembled molecular containers used for catalysis with special emphasis on molecular barrels. This paper built on existing literature provides a thorough development of the fertile ground of the coordination architecture for catalysis and its future direction of propagation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app