Add like
Add dislike
Add to saved papers

A facile modular approach to the 2D oriented assembly MOF electrode for non-enzymatic sweat biosensors.

Nanoscale 2018 April 6
The preparation of ordered metal organic frameworks (MOFs) will be a critical process for MOF-based nanoelectrodes in the future. In this work, we develop a novel approach to fabricating a type of MOF electrode based on flexible amino-functionalized graphene paper modified with 2D oriented assembly of Cu3(btc)2 nanocubes via facile interfacial synthesis and an effective dip-coating method. One interesting finding is that 2D arrays of Cu3(btc)2 nanocubes at oil-water interfaces can be transferred on amino-functionalized graphene paper, leading to a densely packed monolayer of Cu3(btc)2 nanocubes with a uniform size loaded on the paper electrode. The electrode demonstrates a variety of excellent sensing performances toward sweat lactate and glucose and has been applied in a non-enzymatic electrochemical biosensing platform for the first time. The modular nature of this approach to assembling MOF nanocrystals will provide new insight into the design of MOF-based electrodes for a wide range of applications in biosensing instruments, wearable electronics, and lab-on-a-chip devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app