Add like
Add dislike
Add to saved papers

A Tailorable In-Situ Light-Activated Biodegradable Vascular Scaffold.

Biodegradable vascular scaffolds (BVS) are novel treatments for obstructive atherosclerotic cardiovascular disease that have been developed to overcome the limitations of traditional metallic drug-eluting stents (DES). The mechanical properties of bioabsorbable polymers used for the production of novel BVS are a key consideration for the clinical translation of this emerging technology. Herein, we describe the engineering of an in situ light-activated vascular scaffold (ILVS) comprised of a biodegradable citric acid-based elastomeric polymer, referred to as methacrylated poly-diol citrate (mPDC), and a diazeniumdiolate chitosan nitric oxide donor (chitoNO). In vitro studies demonstrate that the mechanical properties of the ILVS can be tailored to meet or exceed those of commercially available self-expanding bare metal stents (BMS). The radial compression strength of the ILVS is higher than that of a BMS despite undergoing degradation at physiologic conditions for 7 months. ILVS containing chitoNO provides sustained supraphysiologic levels of NO release. Lastly, ILVS were successfully cast in porcine arteries ex vivo using a custom designed triple balloon catheter, demonstrating translational potential. In conclusion, these data demonstrate the ability of an ILVS to provide tunable mechanical properties and drug-delivery capabilities for the vasculature, and thereby support mPDC as a promising material for the development of novel BVS platforms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app