Add like
Add dislike
Add to saved papers

Acute stress alters the rates of degradation of cardiac muscle proteins.

Journal of Proteomics 2018 March 23
Stressful experiences can have detrimental effects on many aspects of health and wellbeing. The zebrafish (Danio rerio) is a widely used model for stress research and a stress phenotype can be induced by manipulating the environmental conditions and social interactions. In this study we have combined a zebrafish stress model with the measurement of degradation rates of soluble cardiac muscle proteins. The results showed that the greater the stress response in the zebrafish the lower the level of overall protein degradation. On comparing the rates of degradation for individual proteins it was found that four main pathways were altered in response to stress conditions with decreased degradation for proteins involved in glucose metabolism, gluconeogenesis, the ubiquitin-proteasome system (UPS) and peroxisomal proliferator-activated receptor (PPAR) signalling pathways. Taken together, these data indicate that under stress conditions zebrafish preserve cardiac muscle proteins required for the 'fight or flight' response together with proteins that play a role in stress mitigation.

SIGNIFICANCE: This study is the first to investigate the impact of stressful experiences on the dynamics of protein turnover in cardiac muscle. Using an established zebrafish model of human stress it has been possible to map key pathways at the protein level. The results show that the rates of degradation of cardiac proteins involved in glucose metabolism, UPS activity, hypoxia and PPAR signalling are decreased in stressed zebrafish. These findings indicate that proteins involved in the 'fight or flight' response to stress are conserved by the heart together with proteins that play a role in stress mitigation. This work provides the basis for more detailed investigations aimed at understanding the molecular effects of stress, which has implications for human health and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app