Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Aluminum is a powerful adjuvant in teleost fish despite failing to induce interleukin-1β release.

Although aluminum salts (Alum) have been extensively used in human vaccination for decades, its mechanism of action is controversial. In fish, the use of Alum as a vaccine adjuvant is scarce and there are no studies aimed at identifying its mechanism of action. In the present study we report that Alum is a powerful adjuvant in the gilthead seabream (Sparus aurata L., Sparidae) and the European seabass (Dicentrarchus labrax L. Moronidae). Thus, Alum increased the specific antibody titers to the model antigen keyhole limpet hemocyanin as the commonly used Freund's adjuvant did in both species. In addition, both adjuvants were able to increase the transcript levels of the gene encoding the major pro-inflammatory mediator interleukin-1β (Il1b). Strikingly, however, Alum failed to promote Il1b release by seabream leukocytes and even impaired Il1b induction, processing and release in macrophages. However, it increased NADPH oxidase-dependent reactive oxygen species (ROS) production in gilthead seabream leukocytes and purified granulocytes. In addition, Alum promoted gilthead seabream leukocyte death independently of ROS production and caspases, suggesting that damage-associated molecular patterns release from dying cells mediate Alum adjuvant activity. Our results pave the way for future studies aimed at investigating the relevance of danger signals generated by Alum in vivo on its adjuvant activity in order to increase our understanding of the mechanisms of action of Alum in fish vaccines and to help in the design of new adjuvants for aquaculture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app